import random from collections import Counter from typing import Dict, Any, List, Tuple def recommend_numbers( draws: List[Tuple[int, List[int]]], *, recent_window: int = 200, recent_weight: float = 2.0, avoid_recent_k: int = 5, seed: int | None = None, ) -> Dict[str, Any]: """ 가벼운 통계 기반 추천: - 전체 빈도 + 최근(recent_window) 빈도에 가중치를 더한 가중 샘플링 - 최근 avoid_recent_k 회차에 나온 번호는 확률을 낮춤(완전 제외는 아님) """ if seed is not None: random.seed(seed) # 전체 빈도 all_nums = [n for _, nums in draws for n in nums] freq_all = Counter(all_nums) # 최근 빈도 recent = draws[-recent_window:] if len(draws) >= recent_window else draws recent_nums = [n for _, nums in recent for n in nums] freq_recent = Counter(recent_nums) # 최근 k회차 번호(패널티) last_k = draws[-avoid_recent_k:] if len(draws) >= avoid_recent_k else draws last_k_nums = set(n for _, nums in last_k for n in nums) # 가중치 구성 weights = {} for n in range(1, 46): w = freq_all[n] + recent_weight * freq_recent[n] if n in last_k_nums: w *= 0.6 # 최근에 너무 방금 나온 건 살짝 덜 뽑히게 weights[n] = max(w, 0.1) # 중복 없이 6개 뽑기(가중 샘플링) chosen = [] pool = list(range(1, 46)) for _ in range(6): total = sum(weights[n] for n in pool) r = random.random() * total acc = 0.0 for n in pool: acc += weights[n] if acc >= r: chosen.append(n) pool.remove(n) break chosen_sorted = sorted(chosen) explain = { "recent_window": recent_window, "recent_weight": recent_weight, "avoid_recent_k": avoid_recent_k, "top_all": [n for n, _ in freq_all.most_common(10)], "top_recent": [n for n, _ in freq_recent.most_common(10)], "last_k_draws": [d for d, _ in last_k], } return {"numbers": chosen_sorted, "explain": explain}