Files
web-page-backend/backend/app/main.py

411 lines
12 KiB
Python

import os
from typing import Optional, List, Dict, Any, Tuple
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from apscheduler.schedulers.background import BackgroundScheduler
from .db import (
init_db, get_draw, get_latest_draw, get_all_draw_numbers,
save_recommendation_dedup, list_recommendations_ex, delete_recommendation,
update_recommendation,
)
from .recommender import recommend_numbers
from .collector import sync_latest, sync_ensure_all
from .generator import generate_smart_recommendations
from .checker import check_results_for_draw
app = FastAPI()
scheduler = BackgroundScheduler(timezone=os.getenv("TZ", "Asia/Seoul"))
ALL_URL = os.getenv("LOTTO_ALL_URL", "https://smok95.github.io/lotto/results/all.json")
LATEST_URL = os.getenv("LOTTO_LATEST_URL", "https://smok95.github.io/lotto/results/latest.json")
def calc_metrics(numbers: List[int]) -> Dict[str, Any]:
nums = sorted(numbers)
s = sum(nums)
odd = sum(1 for x in nums if x % 2 == 1)
even = len(nums) - odd
mn, mx = nums[0], nums[-1]
rng = mx - mn
# 1-10, 11-20, 21-30, 31-40, 41-45
buckets = {
"1-10": 0,
"11-20": 0,
"21-30": 0,
"31-40": 0,
"41-45": 0,
}
for x in nums:
if 1 <= x <= 10:
buckets["1-10"] += 1
elif 11 <= x <= 20:
buckets["11-20"] += 1
elif 21 <= x <= 30:
buckets["21-30"] += 1
elif 31 <= x <= 40:
buckets["31-40"] += 1
else:
buckets["41-45"] += 1
return {
"sum": s,
"odd": odd,
"even": even,
"min": mn,
"max": mx,
"range": rng,
"buckets": buckets,
}
def calc_recent_overlap(numbers: List[int], draws: List[Tuple[int, List[int]]], last_k: int) -> Dict[str, Any]:
"""
draws: [(drw_no, [n1..n6]), ...] 오름차순
last_k: 최근 k회 기준 중복
"""
if last_k <= 0:
return {"last_k": 0, "repeats": 0, "repeated_numbers": []}
recent = draws[-last_k:] if len(draws) >= last_k else draws
recent_set = set()
for _, nums in recent:
recent_set.update(nums)
repeated = sorted(set(numbers) & recent_set)
return {
"last_k": len(recent),
"repeats": len(repeated),
"repeated_numbers": repeated,
}
@app.on_event("startup")
def on_startup():
init_db()
# 1. 로또 당첨번호 동기화 (매일 9시, 21시 10분)
# 동기화 후 새로운 회차가 있으면 채점(check)까지 수행
def _sync_and_check():
res = sync_latest(LATEST_URL)
if res["was_new"]:
# 새로운 회차(예: 1000회)가 나오면, 999회차 기반 추천들을 채점
check_results_for_draw(res["drawNo"])
scheduler.add_job(_sync_and_check, "cron", hour="9,21", minute=10)
# 2. 매일 아침 8시: 지능형 자동 추천 (10개씩)
scheduler.add_job(lambda: generate_smart_recommendations(10), "cron", hour="8", minute=0)
scheduler.start()
@app.get("/health")
def health():
return {"ok": True}
@app.get("/api/lotto/latest")
def api_latest():
row = get_latest_draw()
if not row:
raise HTTPException(status_code=404, detail="No data yet")
return {
"drawNo": row["drw_no"],
"date": row["drw_date"],
"numbers": [row["n1"], row["n2"], row["n3"], row["n4"], row["n5"], row["n6"]],
"bonus": row["bonus"],
"metrics": calc_metrics([row["n1"], row["n2"], row["n3"], row["n4"], row["n5"], row["n6"]]),
}
@app.get("/api/lotto/{drw_no:int}")
def api_draw(drw_no: int):
row = get_draw(drw_no)
if not row:
raise HTTPException(status_code=404, detail="Not found")
return {
"drwNo": row["drw_no"],
"date": row["drw_date"],
"numbers": [row["n1"], row["n2"], row["n3"], row["n4"], row["n5"], row["n6"]],
"bonus": row["bonus"],
"metrics": calc_metrics([row["n1"], row["n2"], row["n3"], row["n4"], row["n5"], row["n6"]]),
}
@app.post("/api/admin/sync_latest")
def admin_sync_latest():
res = sync_latest(LATEST_URL)
# 수동 동기화 시에도 신규 회차면 채점
if res["was_new"]:
check_results_for_draw(res["drawNo"])
return res
@app.post("/api/admin/auto_gen")
def admin_auto_gen(count: int = 10):
"""지능형 자동 생성 수동 트리거"""
n = generate_smart_recommendations(count)
return {"generated": n}
@app.get("/api/lotto/stats")
def api_stats():
# 1. 데이터 완전성 보장 (없으면 가져옴)
sync_ensure_all(LATEST_URL, ALL_URL)
# 2. 전체 데이터 조회
draws = get_all_draw_numbers()
if not draws:
raise HTTPException(status_code=404, detail="No data yet")
# 1~45번 빈도 초기화
frequency = {n: 0 for n in range(1, 46)}
total_draws = len(draws)
for _, nums in draws:
for n in nums:
frequency[n] += 1
# 리스트 형태로 변환 (프론트엔드 차트용)
# x: 번호, y: 횟수
stats = [
{"number": n, "count": frequency[n]}
for n in range(1, 46)
]
return {
"total_draws": total_draws,
"frequency": stats
}
# ---------- ✅ recommend (dedup save) ----------
@app.get("/api/lotto/recommend")
def api_recommend(
recent_window: int = 200,
recent_weight: float = 2.0,
avoid_recent_k: int = 5,
# ---- optional constraints (Lotto Lab) ----
sum_min: Optional[int] = None,
sum_max: Optional[int] = None,
odd_min: Optional[int] = None,
odd_max: Optional[int] = None,
range_min: Optional[int] = None,
range_max: Optional[int] = None,
max_overlap_latest: Optional[int] = None, # 최근 avoid_recent_k 회차와 중복 허용 개수
max_try: int = 200, # 조건 맞는 조합 찾기 재시도
):
draws = get_all_draw_numbers()
if not draws:
raise HTTPException(status_code=404, detail="No data yet")
latest = get_latest_draw()
params = {
"recent_window": recent_window,
"recent_weight": float(recent_weight),
"avoid_recent_k": avoid_recent_k,
"sum_min": sum_min,
"sum_max": sum_max,
"odd_min": odd_min,
"odd_max": odd_max,
"range_min": range_min,
"range_max": range_max,
"max_overlap_latest": max_overlap_latest,
"max_try": int(max_try),
}
def _accept(nums: List[int]) -> bool:
m = calc_metrics(nums)
if sum_min is not None and m["sum"] < sum_min:
return False
if sum_max is not None and m["sum"] > sum_max:
return False
if odd_min is not None and m["odd"] < odd_min:
return False
if odd_max is not None and m["odd"] > odd_max:
return False
if range_min is not None and m["range"] < range_min:
return False
if range_max is not None and m["range"] > range_max:
return False
if max_overlap_latest is not None:
ov = calc_recent_overlap(nums, draws, last_k=avoid_recent_k)
if ov["repeats"] > max_overlap_latest:
return False
return True
chosen = None
explain = None
tries = 0
while tries < max_try:
tries += 1
result = recommend_numbers(
draws,
recent_window=recent_window,
recent_weight=recent_weight,
avoid_recent_k=avoid_recent_k,
)
nums = result["numbers"]
if _accept(nums):
chosen = nums
explain = result["explain"]
break
if chosen is None:
raise HTTPException(
status_code=400,
detail=f"Constraints too strict. No valid set found in max_try={max_try}. "
f"Try relaxing sum/odd/range/overlap constraints.",
)
# ✅ dedup save
saved = save_recommendation_dedup(
latest["drw_no"] if latest else None,
chosen,
params,
)
metrics = calc_metrics(chosen)
overlap = calc_recent_overlap(chosen, draws, last_k=avoid_recent_k)
return {
"id": saved["id"],
"saved": saved["saved"],
"deduped": saved["deduped"],
"based_on_latest_draw": latest["drw_no"] if latest else None,
"numbers": chosen,
"explain": explain,
"params": params,
"metrics": metrics,
"recent_overlap": overlap,
"tries": tries,
}
# ---------- ✅ history list (filter/paging) ----------
@app.get("/api/history")
def api_history(
limit: int = 30,
offset: int = 0,
favorite: Optional[bool] = None,
tag: Optional[str] = None,
q: Optional[str] = None,
sort: str = "id_desc",
):
items = list_recommendations_ex(
limit=limit,
offset=offset,
favorite=favorite,
tag=tag,
q=q,
sort=sort,
)
draws = get_all_draw_numbers()
out = []
for it in items:
nums = it["numbers"]
out.append({
**it,
"metrics": calc_metrics(nums),
"recent_overlap": calc_recent_overlap(
nums, draws, last_k=int(it["params"].get("avoid_recent_k", 0) or 0)
),
})
return {
"items": out,
"limit": limit,
"offset": offset,
"filters": {"favorite": favorite, "tag": tag, "q": q, "sort": sort},
}
@app.delete("/api/history/{rec_id:int}")
def api_history_delete(rec_id: int):
ok = delete_recommendation(rec_id)
if not ok:
raise HTTPException(status_code=404, detail="Not found")
return {"deleted": True, "id": rec_id}
# ---------- ✅ history update (favorite/note/tags) ----------
class HistoryUpdate(BaseModel):
favorite: Optional[bool] = None
note: Optional[str] = None
tags: Optional[List[str]] = None
@app.patch("/api/history/{rec_id:int}")
def api_history_patch(rec_id: int, body: HistoryUpdate):
ok = update_recommendation(rec_id, favorite=body.favorite, note=body.note, tags=body.tags)
if not ok:
raise HTTPException(status_code=404, detail="Not found or no changes")
return {"updated": True, "id": rec_id}
# ---------- ✅ batch recommend ----------
def _batch_unique(draws, count: int, recent_window: int, recent_weight: float, avoid_recent_k: int, max_try: int = 200):
items = []
seen = set()
tries = 0
while len(items) < count and tries < max_try:
tries += 1
r = recommend_numbers(draws, recent_window=recent_window, recent_weight=recent_weight, avoid_recent_k=avoid_recent_k)
key = tuple(sorted(r["numbers"]))
if key in seen:
continue
seen.add(key)
items.append(r)
return items
@app.get("/api/lotto/recommend/batch")
def api_recommend_batch(
count: int = 5,
recent_window: int = 200,
recent_weight: float = 2.0,
avoid_recent_k: int = 5,
):
count = max(1, min(count, 20))
draws = get_all_draw_numbers()
if not draws:
raise HTTPException(status_code=404, detail="No data yet")
latest = get_latest_draw()
params = {
"recent_window": recent_window,
"recent_weight": float(recent_weight),
"avoid_recent_k": avoid_recent_k,
"count": count,
}
items = _batch_unique(draws, count, recent_window, float(recent_weight), avoid_recent_k)
return {
"based_on_latest_draw": latest["drw_no"] if latest else None,
"count": count,
"items": [{
"numbers": it["numbers"],
"explain": it["explain"],
"metrics": calc_metrics(it["numbers"]),
} for it in items],
"params": params,
}
class BatchSave(BaseModel):
items: List[List[int]]
params: dict
@app.post("/api/lotto/recommend/batch")
def api_recommend_batch_save(body: BatchSave):
latest = get_latest_draw()
based = latest["drw_no"] if latest else None
created, deduped = [], []
for nums in body.items:
saved = save_recommendation_dedup(based, nums, body.params)
(created if saved["saved"] else deduped).append(saved["id"])
return {"saved": True, "created_ids": created, "deduped_ids": deduped}
@app.get("/api/version")
def version():
import os
return {"version": os.getenv("APP_VERSION", "dev")}